

1

Linx – Google Sheets Integration

Author: R Worthington

Date: Sep 2019

Linx Version: 5.16.6.0

2

Contents
Introduction ... 3

Setup .. 4

1. Register as a developer ... 4

2. Register your Project/Application and Enable API Scope ... 4

3. Retrieve Authorization Code using created Credentials .. 6

1. Obtain OAuth 2.0 credentials from the Google API Console... 6

2. Grant Access and Obtain Authorization Code ... 12

3. Obtain an access token from the Google Authorization Server. .. 14

Sample Processes .. 23

Google Drive ... 24

Retrieve List of files from Google Drive ... 24

Upload files from local drive to Google Drive ... 26

Download files from Google Drive to local drive .. 27

Delete files from Google Drive .. 28

Add Custom Properties for a File.. 28

Search for Files by Custom Property ... 29

Google Sheets ...30

Create a Google Sheet ...30

Update data values of a Google Sheet ...30

Create Metadata for a Sheet ..30

Useful Resources: ...31

3

Introduction

Google Drive and (specific to this sample) Google Sheets, offers a RESTful Webservice API which allows
you to create apps that leverage Google Drive cloud storage. You can develop applications that integrate
with Google Drive, and create robust functionality in your application using Google Drive API.

The API enables you to:

• Download files from Google Drive and Upload files to Google Drive.
• Search for files and folders stored in Google Drive. Create complex search queries that return

any of the file metadata fields in the Files resource.
• Let users share files, folders and drives to collaborate on content.
• Combine with the Google Picker API to search all files in Google Drive, then return the file

name, URL, last modified date, and user.
• Create shortcuts that are external links to data stored outside of Drive, in a different data store

or cloud storage system.
• Create a dedicated Drive folder to store your application’s data so that the app cannot access all

the user's content stored in Google Drive. See Store application-specific data.
• Integrate with the Google Drive UI, which is Google's standard web UI you can use to interact

with Drive files. To learn all that you can do with a Drive app that you integrate with the Google
Drive UI, see Drive UI integration overview

https://developers.google.com/drive/api/v3/manage-downloads
https://developers.google.com/drive/api/v3/manage-uploads
https://developers.google.com/drive/api/v3/search-files
https://developers.google.com/drive/api/v3/reference/files
https://developers.google.com/drive/api/v3/manage-sharing
https://developers.google.com/picker/docs/
https://developers.google.com/drive/api/v3/integrate-create#create_a_shortcut_to_a_file
https://developers.google.com/drive/api/v3/appdata
https://developers.google.com/drive/api/v3/about-apps

4

Setup
To begin our integration, we first need to register our application on the Google developer’s portal, this
will allow us to generate the necessary authentication keys as well as grant the API specific access within
the Google Drive instances.

In order to progress with the Linx- Google integration, you must have downloaded and installed the Linx
Application Designer which will allow you to build/use the sample solution. Following this, you can install
the Linx Application Server which will allow you to automate your solution.

If you haven’t already downloaded the Linx Application Designer, then do so here.

The following steps are required to configure the initial API setup.

1. Register as a developer
2. Register your Application/Project and Enable API scope
3. Retrieve Authorization Code using created Credentials
4. Use authentication to retrieve Access Tokens
5. Connect your Linx solution

1. Register as a developer
In order for you to interact with the Google Drive API you must first register as a developer, this will give
you access to the Google Developer Console which allows you to configure numerous components
related to app development and integration.

Navigate to the Google Developer Console, if you are not already registered as a developer then register
yourself.

2. Register your Project/Application and Enable API Scope
Once logged in to the Google Developer Console, you should see the API Console Dashboard. On the
Menu bar you should see the option to select a project:

For this sample, we are going to create a new Project named ‘LinxDemo’

https://linx.software/get-started-today/
https://console.developers.google.com/
https://console.developers.google.com/

5

Now we have created our project, make sure it is selected as the current project next to the main menu.

Next, we need to enable the relevant APIs for our Project.

On your dashboard you should see the following screen:

Click on the button and you will be redirected to the API Library page.

The API Library contains all the possible Google APIs that you can enable for your application.

For the scope of this sample we will be using:

• Google Drive API: Allows access to resources from Google Drive

6

• Google Sheets API: Gives apps full control over the content and appearance of
spreadsheet data

• Google+ API: Enables developers to build on top of the Google+ platform (Make
sure this is enabled as there appears to be a bug with the API if this isn’t enabled).

Search for each of the above and click on the relevant API, then “enable” the relevant APIs:

We now have enabled the relevant scope of the APIs we are going to make user of, in the next section
we’ll look into generating authorization credentials.

3. Retrieve Authorization Code using created Credentials
In order to create a secure “link” between our solution/application and Google Drive, we need to go
through the OAuth 2.0 process which results in Access and Refresh Tokens being generated that we can
use to authenticate our solution with Google Drive.

In the following steps we will generate the necessary tokens but for a more information about the
OAuth process for Google Drive can be found here.

OAuth Basic Flow:

1. Obtain OAuth 2.0 credentials from the Google API Console.
2. Grant Access and Obtain Authorization Code
3. Obtain an access token from the Google Authorization Server.
4. Connect to the Google API with Access Token

Steps:

1. Obtain OAuth 2.0 credentials from the Google API Console.
Visit the Google API Console to obtain OAuth 2.0 credentials such as a client ID and client secret that are
known to both Google and your application. The set of values varies based on what type of application

https://developers.google.com/identity/protocols/OAuth2

7

you are building. For example, a JavaScript application does not require a secret, but a web server
application does.

To begin, on the Google API Console dashboard, from the menu on the left panel, select ‘Credentials’.

Next, click on ‘Create credentials’, and from the drop-down options, select ‘OAuth client ID’ (If you are
unable to view options for OAuth credentials then you need to ‘Configure consent screen’ –
described below).

You should see the below screen:

8

As the message states, we first need to configure the OAuth consent screen, this is the screen that
users will see when they initially generate the authorization code on the front-end.

If you click on the button you will be taken to this page.

Fill out the basic details of your solution such as the Name and Authorized Domains.

9

Then click ‘Save’, you should be redirected to the below page:

Select the ‘Web application’ option and complete the fields like below, make note of the redirect URI.

10

Once created you will see your Client ID and Client Secret displayed:

Copy these values out and store them in a file somewhere just for the moment (you can also download
these values as a Json string by clicking on the credentials that you just added)

11

Json string containing configuration:

{

 "web":{

 "client_id":"680470266551-
p3gmned4sj7rlng4982igi0gd9qq5peo.apps.googleusercontent.com",

 "project_id":"linxdemo-253210",
 "auth_uri":"https://accounts.google.com/o/oauth2/auth",

 "token_uri":"https://oauth2.googleapis.com/token",

 "auth_provider_x509_cert_url":"https://www.googleapis.com/oauth2/v1/certs
",

 "client_secret":"Sn0B-prbR3kd9qMNS-aohPHl",

 "redirect_uris":[
 "https://localhost"

]

 }
}

12

Now that we have configured our Google Project, we must now authorize our application from the
front-end.

2. Grant Access and Obtain Authorization Code
Before we can generate the necessary access tokens, we first need to manually authorize our
application, from here we will obtain an access code which is then used to generate tokens.

Navigate to the following URL:
https://accounts.google.com/o/oauth2/auth?scope=https://www.googleapis.com/aut
h/drive&response_type=code&access_type=offline&redirect_uri=<redirecturl>&client_id=
<client id>

Where <client id> and <redirect url> are replaced by the configuration values obtained in Step 1.

For ease of sake, as you may have to do this a few times, we are going to use Linx to populate the URL
for us.

If you open up the sample solution and open the Setting values, replace the following values with the
ones obtained in Step 1:

• google_ClientID: Client ID
• google_ClientSecret: Client Secret
• google_RedirectURI: Redirect URI i.e. http://localhost

Next, in your Linx sample solution, debug the process [Google] > [Authentication] > GenerateAuthURL.

You will see a URL being constricted with the dynamic parameters:

Next, navigate to this URL from a Web browser.

https://accounts.google.com/o/oauth2/auth?scope=https://www.googleapis.com/auth/drive&response_type=code&access_type=offline&redirect_uri=%3credirecturl%3e&client_id=
https://accounts.google.com/o/oauth2/auth?scope=https://www.googleapis.com/auth/drive&response_type=code&access_type=offline&redirect_uri=%3credirecturl%3e&client_id=

13

You should then be asked to log in to your Google Account, once logged in you will be presented with
the below screen, when you are, click ‘Allow’:

You will then be redirected to you Redirect URI that we configured in Step 1, in our case, as we are using
localhost, it will look like there is an error:

However, if you take a look at the URL, it contains some information, one of those is the Authorization
Code in the format of “https://localhost/?code=<your new auth code
here>&scope=https://www.googleapis.com/auth/drive.

https://localhost/?code=

14

In this example the Authorization Code will be:
https://localhost/?code=4/rAFHxo976tjusl3SmyLlhpqfUGf8VFC2Rz_4s6-k7U9QU929-
IF7_t2hQohdARpAAF3C2PAoNNiMJcPP538UE0c&scope=https://www.googleapis.com/auth/drive

Copy the value after “code=” up until “&scope” and paste it in the Linx sample solution setting value
google_AuthCode.

This Authorization code is only valid for one request to get your Access and Refresh tokens (Step 3.3), if
your request fails then you will have to generate a new Authorization Code by repeating Step 3.2.

3. Obtain an access token from the Google Authorization Server.
In this next step we are going to make a Webservice request with our authorization values retrieved
from previous steps in order to obtain an Access and Refresh token.

Creating Automated Access Token Grant

In order to create a dynamic process that is automated, we need to create 3 processes that will handle
the granting and refreshing of access tokens, these will be:

1. GrantTokens: To initially grant the access tokens by using the Auth Code obtained in Step 3.2.
2. RefreshTokens: To handle the renewal of Access Tokens when they are expiring.
3. Authenticate: A handler process that will call the relevant process above.

The above is all included in the sample solution but I will explain how it was built so you can understand
for future Webservice authentication as the OAuth process is very generic.

1. Grant Tokens
Sample solution process: [Google_Intergration] > [Google] > [Authentication] > [GrantTokens]

This process will make a RESTful WebService request containing our authentication credentials, if
successful, it will return the new Access and Refresh tokens.

To begin, create a new process and give it the name of ‘GrantTokens’.

Next, add a CallRESTWebService function to the process and configure the properties as follows:

• URL: https://accounts.google.com/o/oauth2/token
• Method: POST
• Body format: URL Encoded Content
• URL Encoded body:

https://localhost/?code=4/rAFHxo976tjusl3SmyLlhpqfUGf8VFC2Rz_4s6-k7U9QU929-IF7_t2hQohdARpAAF3C2PAoNNiMJcPP538UE0c&scope=https://www.googleapis.com/auth/drive
https://localhost/?code=4/rAFHxo976tjusl3SmyLlhpqfUGf8VFC2Rz_4s6-k7U9QU929-IF7_t2hQohdARpAAF3C2PAoNNiMJcPP538UE0c&scope=https://www.googleapis.com/auth/drive
https://accounts.google.com/o/oauth2/token

15

•
• Output type: String

Before running this process, repeat Step 3.2 (Obtain Auth Code) and update the Auth Code setting
value.

Once you’ve updated the code, run the process and take note of the debug output:

If your request was successful, you should see that the CallRESTWebservice function returns a
response “200” along with a Json string containing our access and refresh tokens.

If your response was like the below, then you need to repeat Step 3.2.

16

Note: If your request was successful, but there was no ‘RefreshToken’ present in the response, then go
to https://myaccount.google.com/u/0/permissions and remove permissions for the App, then repeat
Step 3.2. This is because the RefreshToken is only returned once when you first authorize the App.

Now, for use of use later in our solution, we want to create a CustomType based on this output so we
can pass the values into our other sub-processes that will require the credentials. To do this, copy the
ResponseBody String output from the CallRESTWebservice function and import it as a custom type
names ‘AccessToken’

GrantTokens Trace Log:

URL Constructed https://accounts.google.com/o/oauth2/token

HTTP client created

Sending POST request

Response received

Response code: 400 (BadRequest)

Body:

{

 "error": "invalid_grant",

 "error_description": "Bad Request"

}

https://myaccount.google.com/u/0/permissions

17

Now that we have our AccessToken CustomType structure configured, we can configure the
CallRESTWebservice function, to return the output of the request as this CustomType.

If we repeat the actions from Step 3.2 up until now, and debug our process, you will see the structured
output of the Webservice call.

Now to make this process modular, we are going to set this response as the output for the GrantTokens
process. To do this, configure a Process output named “AccessToken” and set it of the type
CustomType AccessToken.

Then, add a SetValue function to your process that will set the value of the output AccessToken =
CallRESTWebservice Response Body:

18

By doing this, we can call the process from another process and retrieve the Access token in a more
user-friendly fashion, it also makes the process more modular so that you can copy it into other
solutions without altering much.

Now that we have completed the process that grants us the access tokens, we are going to build one
that refreshes the access tokens for us.

2. Refresh Tokens
Similar to the above process, we are now going to make a process that will take in the AccessToken
CustomType, it will then make a Webservice request with the token details, upon successful response,
it will return an updated AccessToken custom type.

To save you some time, copy the process we just built ‘GrantTokens’ and rename the copied process to
‘RefreshTokens’.

Then, configure the process the process to have an input ‘AccessToken’ of the CustomType
‘AccessToken’

Next, rename the CallRESTWebservice function to ‘RefreshTokens’ and condifure it as below:

• URL: https://www.googleapis.com/oauth2/v4/token
• Method: POST
• Body format: URL Encoded Content
• URL Encoded body:

•
• Output: Leave as-is i.e. AccessToken CustomType

We now have a process that will handle the refreshing of access tokens, to test this we need to create a
handler process that will call either the GrantTokens or RefreshTokens process depending on a
condition.

https://www.googleapis.com/oauth2/v4/token

19

3. Authentication Handler
We are now going to create an authentication handler process that will determine if the access token
exists, if it doesn’t then the process will execute the sub-process ‘GrantTokens’, if it does exist but is
about to expire then the sub-process ‘RefreshTokens’ will be called. The response from either of these
processes will then be written to a file/database for later retrieval.

In the provided sample, I have created 2 approaches to retrieving and storing these values, the first one
is storing them in a database and the second is storing them in a file, depending on your environment
you can choose either one, they only differ on where the data is stored. You will see by comparing the
two that they are practically the same.

1. Authentication Handler: File
This process works as follows:

• Check if Access Token file exists on drive
• If exists:

o Read file contents
o Check Token expiry

▪ If expires soon:
• Call process RefreshToken
• Write output to file

• If not exists:
o Call process GrantToken
o Write output to file

2. Authentication Handler: Database
This process works as follows:

• Retrieve AccessToken object from DB [Sub-process]
• If exists:

o Check Token expiry
▪ If expires soon:

• Call process RefreshToken
• Write output to database

• If not exists:
o Call process GrantToken
o Write output to database

The above authentication handler process can be added to a Timer service so that the process continually
checks if the token is still valid for example every 2 minutes. This will ensure that your access token is
always valid, when we will use the access token, we will simply reference a process that will read the
database/file and return the current token. This will be discussed in the next section.

20

For now, add a Timer service that executes every 2 minutes or so, when the event is triggered make a
process call to the relevant authentication handler:

Once you have setup the Timer service, deploy your Solution to the Linx Application Server.

Then repeating Step 3.2, update your Auth Code in the Setting values of your solution and start the
timer service.

Let the timer service run and if no errors appear, go onto the next section.

If at all this process fails at some point (i.e. details change, timer interval incorrect), repeat step 3.2 up
until 3.3.3.

4. Connect to the Google API with Access Token
For this process, we are going to make a simple Webservice request which will retrieve information
about our Google Drive instance, this is to demonstrate that the authentication functionality is correctly
configured. We are taking the example from the Google Developer Samples.

Sample solution process: [Google_Intergration] > [Google] > [Authentication] > [TestConnectivity]

For this process, we are going to make a GET request to this url:
https://www.googleapis.com/drive/v3/about

We are going to make use of a CallRESTWebservice function, configure it as follows:

• URL: https://www.googleapis.com/drive/v3/about
• Method: GET
• Query string:

o fields:user
• Headers:

o Authorization:”Bearer” + Access Token
• Body format: Text
• Body:
• Output type: String

You will notice that we are using a header value, this is often the case with OAuth access, where you
pass in the Access Token value as a header value and it authenticates your request. To make the
process dynamic, we are going to pass in the Access Token from a sub-process which just returns the
AccessToken object (RetrieveAccessToken_DB).

https://developers.google.com/drive/api/v3/reference/about/get
https://www.googleapis.com/drive/v3/about
https://www.googleapis.com/drive/v3/about

21

Then, we are also specifying in out Query string that we only want “About” information for the field
“user”:

If you debug your process an enable logging, when the process runs you should see a successful “200”
response with your information.

22

If we wanted to, we could import this response as a CustomType and handle it better but because this
is just to perform a “ping” test we are going to leave it as is.

You should now be fully connected to your Google Drive instance, using what you have learnt above
you should be fairly comfortable with handling OAuth authentication in general. In the following
sections we’ll go through some more practical and real-world samples in which we will explore the
Google Drive API functionality in more depth.

23

Sample Processes

If you take a look at the provided sample solution there are a number of samples or recipes/templates
that should give you an idea of how to interact with the Google API using Linx. These processes touch on
some of the main API functionality as well extended functionality that can be accomplished with Linx.

Below is a description of each of the provided sample processes to give you a high-level idea, it is
suggested that you tinker and play around with the solution to fully understand the process yourself.
Once you’ve got an idea of the basic structure, you can easily replicate and extend the API functionality.

*Note: These processes cannot be guaranteed to work in production and as such you should do thorough
testing before implementing them.

These processes are located in: [Google_Intergration] > [Google] > [Samples]

24

Google Drive
The below processes demonstrate several areas of API integration which relate to Drive items as a
whole, particular Google Sheets integration is explained further on.

Retrieve List of files from Google Drive
Google Drive API Documentation

Sample Process Location: [Google_Intergration] > [Google] > [Samples]>[ListFiles]>[ListFiles]

In this process, a webservice GET request is made to the Google Drive API to return a list of all the items
on the drive. This will allow you to retrieve the metadata associated with each file as a CustomType object
which you can then use in subsequent requests or to store the details somewhere for future use.

For our request, we are indicating what fields we want returned in the ‘query string’ property to improve
performance.

Run process result with file name input parameter (“LinxReport”):

Results for all drive items:

https://developers.google.com/drive/api/v3/reference/files/list

25

26

Upload files from local drive to Google Drive
Google Drive API Documentation

Sample Processes Location: [Google_Intergration] > [Google] > [Samples]>[Upload]

In this process, a file list is performed on a local file directory, when a file is picked up by Linx, it is then
searched for on Google Drive. If the file does not exist then the file is uploaded to Google Drive making
use of a resumable upload. If the file does already exist, a further check is done to determine if the file on
the local drive has been modified after the file on Google drive. If it is, then the file is updated with the
new file contents and metadata using a resumable upload. The resumable upload involves submitting
metadata in one request as a Json body, receiving a URL back, and then uploading the file data to the
returned URL in a subsequent request with the request body containing a filestream of the file. Once the
file has been uploaded to Google drive, the file is then moved from the local directory into a “processed”
directory.

https://developers.google.com/drive/api/v3/reference/files/create

27

Download files from Google Drive to local drive
Google API Documentation:

• Google Docs Export
• Non-Google Doc Download
• File Management

Sample Process Location: [Google_Intergration] > [Google] > [Samples]>[Download]>[DowloadAllFiles]

In this process, files on Google Drive are downloaded onto your local drive. In order to download/export
specific files you need to specify the item ID to download it, to get the ID we can use our process created
earlier which returns a list of files.

The process is as follows.

First, a list of all the files on your Google Drive instance are retrieved.

Then, for each file returned the sub-process DownloadFileHandler is run.

In DownloadFileHandler, first a check is done on the MIME type of the file, this is to determine what type
of item it is i.e. Sheet, Doc, Folder etc.

If the file is a generic Google doc, then the sub-process ‘DownloadFile_ExportGoogleFile’ is then executed.

DownloadFile_ExportGoogleFile: The sub-process ‘ConvertMIMEType’ is called which returns the MS
Office equivalent of the GDrive MIME type. Then using this MIMEType, a webservice request is made to
‘export’ the google doc. A conversion is then done on the filename to remove any special characters for
the Windows drive. Finally, using a BinaryFileWrite function, the filestream returned from the webservice
is written to a file.

If the item is of type Google Folder, a file list is performed on the Google Folder to list its contents. For
each item in the folder, the process DownloadFileHandler is called again which will repeat the above
process to download the files within the folder.

If the drive item is not a generic google doc i.e. Excel Document, MS Word Doc, then another branch of
logic is triggered. First, a check is done on the file size of the item, if the size exceeds the max download
size in bytes then a multipart download is performed by calling the sub-process
‘DownloadFile_MultipartDownload’. This works by retrieving batches of the file until all the data has been
retrieved, as the data is retrieved it is a built up in a byte list. Finally, once all the data has been stored in
the byte list, it is written to a file using the BinaryFileWrite function.

If the file size is below the max download threshold, then the sub-process ‘DownloadFile_NonGoogleFile
‘ is called and inside it one request is made that retrieves all the data of the file, then using a the
BinaryFileWrite function the file is written to the local drive.

https://developers.google.com/drive/api/v3/reference/files/export
https://developers.google.com/drive/api/v3/reference/files/export
https://developers.google.com/drive/api/v3/reference/files/get
https://developers.google.com/drive/api/v3/reference/files/get
https://developers.google.com/drive/api/v3/reference/files/
https://developers.google.com/drive/api/v3/reference/files/
https://developers.google.com/drive/api/v3/mime-types

28

Delete files from Google Drive
Google Drive API Documentation

Sample Process Location: [Google_Intergration] > [Google] >
[Samples]>[Download]>[DeleteFile]>[DeleteFile]

In this process, a DELETE webservice request is made with the FileID of the selected file, the file will
then be removed from your Google Drive instance.

Add Custom Properties for a File
Google Drive API Documentation

Sample Process Location:

Location: [Samples] > [Drive] > [CustomProperties] > [AddCustomProperties]

Custom properties which can be thought of as drive item metadata is very useful in adding additional
custom “tags” to drive items, these could be individual identifiers or groups of files which you can then
search for all at once using the process. Custom properties are added in a key:value pair format.

Examples use cases of custom properties:

• Linking custom IDs to drive items in order to track files across systems eg.
“CustomID”:”363637””

• Linking files by group, eg: “Department”:”Treasury”

These can then be used to retrieve groups or specific drive items in a fairy quick and straight forward
way.

The process works as follows,

A list of key:value custom property pairs and a FileID are passed in as an input.

A loop is then performed for each of the key, value pairs in the list, for each item, a JSON string is built
up that will contain all the custom properties to be submitted.

The JSON string is then “closed”.

A webservice PATCH request is then made to the endpoint containing the FileID along with the JSON
body that was built up and contains all the custom properties for that file.

Upon successful request, the custom properties are linked to the file.

A “real world” example process “Example_LinkCustomIDForFiles” has been created to demonstrate a
use case. In this process, all the files from the drive are returned, then a random string is generated
(unique ID) and submitted as a custom property for each of the files. Then the DriveID and the UniqueID
generated are written to a file to keep track of.

https://developers.google.com/drive/api/v3/reference/files/delete
https://developers.google.com/drive/api/v3/reference/files/delete

29

Search for Files by Custom Property
Location: [Samples] > [Drive] > [CustomProperties] > [SearchByCustomProperty]

Now that we can link custom properties to files, we can then use these properties to search for drive
items. In this process, a key:value pair are taking in as inputs, then a file list request is made with the
key:value pair as query parameters:

30

Google Sheets
Create a Google Sheet
Google Sheets API Documentation

Sample Process Location: [Google_Intergration] > [Google] > [Samples]>[Sheets]>[Write]>[WriteSheet]

In this process, we are going to submit some metadata to the Google Sheets API from a CustomType
which will create a blank sheet on the Drive. We can choose to submit other data like the actual cell
values but we will do that with an update in a subsequent process.

The process is as follows:

First, we return the access token by calling the sub-process ‘RetrieveAccessToken_DB’.

Then, we initiate a local instance of the ‘Spreadsheet’ CustomType, with a few of its meta-data
properties configured.

Update data values of a Google Sheet
Google Sheets API Documentation

Sample Process Location: [Google_Intergration] > [Google] >
[Samples]>[Sheets]>[Create]>[CreateSheet]

In this process, we are going to submit values to the Google Sheets API which will then “write out” the
sheet values online. Unlike the previous processes we are not simply uploading a file from the local
drive to google drive, in this case we are instructing the Sheets API to create a sheet as well as write out
values in certain columns/cells.

As of now, all the processes we have covered relate to the high-level Drive API, that’s why we can
upload/download different types of files. For this process, its specific to the sheets and that is why the
Google Sheets API must be enabled.

To “write” values to a sheet, you need to submit the values that you want in the format you expect them
to appear, we do this by submitting a JSON object containing the rows and cells we want to write out.

Create Metadata for a Sheet
Google Sheets API Documentation

This process allows a user to “attach” certain metadata values to a whole spreadsheet (this can be
extended down to lower levels such as cells, but this process demonstrates the concept). These values
can then be used to identify files or group multiple files with “tags”.

In this sample, a spreadsheet with an ID has the metadata tag “testKey”:”testValue” associated with it,

https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/create
https://developers.google.com/sheets/api/samples/writing
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets.developerMetadata

31

Useful Resources:
Google API Console: https://console.developers.google.com

Google Sheet API Samples: https://developers.google.com/sheets/api/samples/

Google Drive API Samples: https://developers.google.com/drive/api/v3/reference/

Google Account Permissions: https://myaccount.google.com/u/0/permissions

https://console.developers.google.com/
https://developers.google.com/sheets/api/samples/
https://developers.google.com/drive/api/v3/reference/
https://myaccount.google.com/u/0/permissions

