L LINX Google
linx.software S h ee t S

Linx - Google Sheets Integration

W [\1) ¢

linx.software

‘ Google
= Sheets

Google Drive

Author: R Worthington
Date: Sep 2019
Linx Version: 5.16.6.0

L LNX

Contents
Introduction 3
Setup 4
1. Register as a developer 4
2. Register your Project/Application and Enable APl Scope 4
3. Retrieve Authorization Code using created Credentials 6
1. Obtain OAuth 2.0 credentials from the Google API Console. 6
2. Grant Access and Obtain Authorization Code 2
3. Obtain an access token from the Google Authorization Server. 14
Sample Processes 23
Google Drive 24
Retrieve List of files from Google Drive 24
Upload files from local drive to Google Drive 26
Download files from Google Drive to local drive 27
Delete files from Google Drive 28
Add Custom Properties for a File 28
Search for Files by Custom Property 29
Google Sheets 30
Create a Google Sheet 30
Update data values of a Google Sheet 30
Create Metadata for a Sheet 30
Useful Resources: K

L LINX

Introduction

Google
Sheets

Google Drive and (specific to this sample) Google Sheets, offers a RESTful Webservice APl which allows
you to create apps that leverage Google Drive cloud storage. You can develop applications that integrate
with Google Drive, and create robust functionality in your application using Google Drive AP!.

The API enables you to:

Download files from Google Drive and Upload files to Google Drive.

Search for files and folders stored in Google Drive. Create complex search queries that return
any of the file metadata fields in the Files resource.

Let users share files, folders and drives to collaborate on content.

Combine with the Google Picker AP| to search all files in Google Drive, then return the file
name, URL, last modified date, and user.

Create shortcutsthat are external links to data stored outside of Drive, in a different data store
or cloud storage system.

Create a dedicated Drive folder to store your application’s data so that the app cannot access all
the user's content stored in Google Drive. See Store application-specific data.

Integrate with the Google Drive Ul which is Google's standard web Ul you can use to interact
with Drive files. To learn all that you can do with a Drive app that you integrate with the Google
Drive Ul, see Drive Ul integration overview

https://developers.google.com/drive/api/v3/manage-downloads
https://developers.google.com/drive/api/v3/manage-uploads
https://developers.google.com/drive/api/v3/search-files
https://developers.google.com/drive/api/v3/reference/files
https://developers.google.com/drive/api/v3/manage-sharing
https://developers.google.com/picker/docs/
https://developers.google.com/drive/api/v3/integrate-create#create_a_shortcut_to_a_file
https://developers.google.com/drive/api/v3/appdata
https://developers.google.com/drive/api/v3/about-apps

LINX .E ShOO?'e
inx.software ee S
Setup

To begin our integration, we first need to register our application on the Google developer’s portal, this
will allow us to generate the necessary authentication keys as well as grant the API specific access within
the Google Drive instances.

In order to progress with the Linx- Google integration, you must have downloaded and installed the Linx
Application Designer which will allow you to build/use the sample solution. Following this, you can install
the Linx Application Server which will allow you to automate your solution.

If you haven't already downloaded the Linx Application Designer, then do so here.
The following steps are required to configure the initial API setup.

Register as a developer

Register your Application/Project and Enable APl scope
Retrieve Authorization Code using created Credentials
Use authentication to retrieve Access Tokens

S N

Connect your Linx solution

1. Register as a developer

In order for you to interact with the Google Drive APl you must first register as a developer, this will give
you access to the Google Developer Console which allows you to configure numerous components
related to app development and integration.

Navigate to the Google Developer Console, if you are not already registered as a developer then register
yourself.

2. Register your Project/Application and Enable API Scope
Once logged in to the Google Developer Console, you should see the API Console Dashboard. On the
Menu bar you should see the option to select a project:

= Google o Linx «

For this sample, we are going to create a new Project named ‘LinxDemo’

https://linx.software/get-started-today/
https://console.developers.google.com/
https://console.developers.google.com/

L LINX

linx.software

= Google
New Project

Project name *
LinxDemo (7]

Project 1D: linkdemo-253210. It cannot be changed later. EDIT

Organization

twenty57.com (7]
This project e attached to twenty57 com

Location *
B twenty57.com BROWSE

Parent organization or folder

CREATE CANCEL

Google
Sheets

Now we have created our project, make sure it is selected as the current project next to the main menu.

= Google % LinxDemo

Next, we need to enable the relevant APIs for our Project.

On your dashboard you should see the following screen:

Google LinxDemo Q
APls & Services APIs & Services ~+ ENABLE APIS AND SERVICES

Dashboard
@ Youdon'thave any APIs available to use yet. To get started, click “Enable APls and services” or go to the AP library

W jbrary
O Credentials
i OAuth consent screen
Domain verification
Sa Pageusage agreements
Click on the T+ ENABLEARIS AND SERVICES button and you will be redirected to the API Library page.

The AP Library contains all the possible Google APIs that you can enable for your application.

For the scope of this sample we will be using:

Google Drive API: Allows access to resources from Google Drive L

L LINX Google
byt ZE0 sheets

o Google Sheets AP!: Gives apps full control over the content and appearance of
spreadsheet data

e Google+ API: Enables developers to build on top of the Google+ platform (Make @
sure this is enabled as there appears to be a bug with the API if this isn't enabled).

Search for each of the above and click on the relevant AP, then “enable” the relevant APIs:

< APl Library

Google Drive API
Google

‘ The Google Drive API allows clients to access resources from Google
Drive

m TRY THIS API [T

We now have enabled the relevant scope of the APIs we are going to make user of, in the next section
we'll look into generating authorization credentials.

3. Retrieve Authorization Code using created Credentials

In order to create a secure “link” between our solution/application and Google Drive, we need to go
through the OAuth 2.0 process which results in Access and Refresh Tokens being generated that we can
use to authenticate our solution with Google Drive.

In the following steps we will generate the necessary tokens but for a more information about the
OAuth process for Google Drive can be found here.

OAuth Basic Flow:

1. Obtain OAuth 2.0 credentials from the Google API Console.

2. Grant Access and Obtain Authorization Code

3. Obtain an access token from the Google Authorization Server.
4. Connect to the Google APl with Access Token

Steps:

1. Obtain OAuth 2.0 credentials from the Google API Console.
Visit the Google API Console to obtain OAuth 2.0 credentials such as a client ID and client secret that are
known to both Google and your application. The set of values varies based on what type of application

6

https://developers.google.com/identity/protocols/OAuth2

v LINX Goog|€
byt ZE0 Sheets

you are building. For example, a JavaScript application does not require a secret, but a web server
application does.

To begin, on the Google API Console dashboard, from the menu on the left panel, select ‘Credentials’.

= Google APls e LinxDemo
API APIs & Services

«f» Dashboard
Library
O Credentials
i Oauth consent screen
Domain verification

Sa Page usage agreements

Next, click on ‘Create credentials’, and from the drop-down options, select ‘OAuth client ID (If you are
unable to view options for OAuth credentials then you need to ‘Configure consent screen’ -

described below).

APls
Credentials

You need credentials to access APIs. Enable the APls you plan to
use and then create the credentials they require. Depending on the
AP, you need an APl key, a service account, or an OAuth 2.0 client
ID. For more information, see the authentication documentation.

Create credentials ~

APl key
Identifies your project using a simple APl key to check guota and access

QAuth client ID
Requests user consent so your app can access the user's data

Service account key
Enables server-to-server, app-level authentication using robot accountis

Help me choose
Asks a few guestions to help you decide which type of credential to use

You should see the below screen:

L LINX

linx.software

= Google APls s Linkbemo

& Create OAuth client ID

To create an OAuth client ID, you must first set a product name on the consent screen

For applications that use the OAuth 2.0 protocol to call Google APIs, you can use an QAuth 2.0 client 1D to
generate an access token. The token contains a unique identifier. See Setting up OAuth 2.0 for more information

Application type

1 Learn more

C T App Learn more
05 Learn mare

As the message states, we first need to configure the OAuth consent screen, this is the screen that
users will see when they initially generate the authorization code on the front-end.

If you click on the button you will be taken to this page.

Fill out the basic details of your solution such as the Name and Authorized Domains.

OAuth consent screen

Before your users authenticate, this consent screen will allow them to choose
whether they want to grant access to their private data, as well as give them a link
to your terms of service and privacy policy. This page configures the consent
screen for all applications in this project

Application type

@ Fublic
Any Google Account can grant access to the scopes reguired by this app
Learn more about scopes

Internal
Only users with a Geegle Account in your organization can grant access to the scopes
requested by this app.

Verification status
Mot published

Application name
The name of the app asking for consent

LinxDemolpp

Application loge
An image on the consent screen that will help users recognize your app

Local file for upload Browse

Support email
Shown on the consent screen for user support

ronan.worthington@twenty57.com -

Scopes for Google APIs
Scopes allow your applic

n 10 aCCess your user's private data. Learn more

If you add a sensitive sco|

u full access 1o Gmail or Drive,

pe, such as scopes that giv
Google will verify your consent screen before it's publis!

emal

profile

openid

About the consent screen

The consent screen tells your users who is
requesting access to their data and what kind of data
you're asking to access.

OAuth verification

To protect you and your users, your consent screen
and application may need to be verified by Google.
Verification is required if your app is marked as
Public and at least one of the following is true:

Your app uses a sensitive and,/or restricted
scope

Your app displays an icon on its OAuth consent
screen

four app has a large number of authorized
domains

‘fou have made changes to a previously-verified
OAuth consent screen

The verification process may take up to several
weeks, and you will receive email updates as it
progresses. Learn more about verification.

Before your consent screen and application are
verified by Geogle, you can still test your application
with limitations. Learn more about how your app w
behave before it's verified

Let us know what you think about our OAuth
experience.

OAuth grant limits

Token grant rate

Your current per minute token grant rate limit is 100
grants per minute. The per minute token grant rate
resets every minute. Your current per day token grant
rate limit is 10,000 granis per day. The per day token
grant rate resets every day.

Raise limit
Th 6h 1d 7d 30d

Sep 17,2019 8:08 AM

Google
Sheets

v LINX Google
byt ZE0 Sheets

Authorized domains

To protect you and your users, Google only allows applications that authenticate using
OAuth to use Authorized Domaing. Your applications’ links must be hosted on Authorized
Domains. Learn more

localnost.com]

example.com

Type in the domain and press Enter to add it

Application Homepage link

Shown on the consent screen. Must be hosted on an Authorized Domain
https:// or http:/y

Application Privacy Policy link

Shown on the consent screen. Must be hosted on an Authorized Domain

https:// or hitp:.//

Application Terms of Service link Dotons
Shown on the consent screen. Must be hosted on an Authorized Domain

https:// or http://

m Submit for verification Cancel

Then click ‘Save’, you should be redirected to the below page:

Select the ‘Web application” option and complete the fields like below, make note of the redirect URI.

L LINX Goog|e
EE0 sheets

& Create QAuth client ID

For applications that use the OAuth 2.0 protocol fo call Google APIs, you can use an OAuth 2.0 client ID 1o
generate an access token. The token contains a unique identifier. See Setting up OAuth 2.0 for more information.

Application type

@& Web application
Android Learn more
Chrome App Learn mare
08 Learn mare
Other

Name

Linx Demo App

Restrictions
Enter JavaScript origins, redirect URIs, or both Learn More

Origins and redirect domains must be added to the list of Authorized Domains in the OAuth consent settings.
Authorized JavaScript origing
For use with reguests from a browser. This is the origin UR| of the client application. It can't contain a wildcard
(https:/f* example.com) or a path (https://example.com/subdir). If you're using a nonstandard port, you must include it
in the crigin URL.
https:/ifwww.example.com
Type in the domain and press Enter to add it
Authorized redirect URIs
For use with reguests from a web server. This is the path in your application that users are redirected to after they have

authenticated with Google. The path will be appended with the authorization code for access. Must have a protocol.
Cannot contain URL fragments or relative paths. Cannot be & public IP address.

https://localhost [}

https:/ifwww.example.com
Type in the domain and press Enter to add it

Once created you will see your Client ID and Client Secret displayed:

OAuth client

The client ID and secret can always be accessed from Credentials in APls &
Services

0 QAuth is limited to 100 sensitive scope logins until the OAuth consent
screen is published. This may require a verification process that can take
several days.

Here is your client ID

6808470266551 -p3gmned4sj7ring4382igi0gdIgaSpeo. apps. googleusercontent . com r|:|
Here is your client secret

Sn@B-prbR3kdSgMNS-aohPHL ru

Copy these values out and store them in a file somewhere just for the moment (you can also download
these values as a Json string by clicking on the credentials that you just added)

10

L LINX

linx.software

= Google APls $s Linkoemo v Q
& Client ID for Web application ¥ DOWNLOAD JSON C RESET SECRET W DELETE

Client ID 680470266551-p3gmned4sj7ring4982igi0gd9qqSpec apps.googleusercontent com

Client secret Sn0B-prbR3kd9gMNS-achPHI

Creation date Sep 17,2019, 21213 PM
Name

Linx Demo App
Restrictions
Emer J ptoriging, redirect URIs, or both Learn More:

Origins and ct domains must be added to the list of Authorized Domains in the OAuth consent settings

. This is the erigin URI of the client application. It can't contain
E’(E\T\D‘E com/subdir). If you're using a nonstandart

must include it

in the origin URI

https://www example.com

Type in the domain and press Enter to add it

Authorized redir

after they have
& a protocol

Cannot contain URL fragments or relative paths. Cannot be a public IP address

https://localhost

https://www.example.com

Type in the domain and press Enter to add it

m Cancel

Json string containing configuration:

"web" : {
"client_id":"680470266551-
p3gmned4sj7rlng4982igifgd9oqq5peo. apps.googleusercontent.com”,
"project_id":"linxdemo-253210",
"auth_uri":"https://accounts.google.com/o/oauth2/auth",
"token_uri":"https://oauth2.googleapis.com/token",
"auth_provider_x509 cert_url":"https://www.googleapis.com/oauth2/vl/certs

"client_secret":"Sn@B-prbR3kd9gMNS-aohPH1",
"redirect_uris":[
"https://localhost”

I

Google
Sheets

v LINX Goog|€
byt ZE0 Sheets

Now that we have configured our Google Project, we must now authorize our application from the
front-end.

2. Grant Access and Obtain Authorization Code
Before we can generate the necessary access tokens, we first need to manually authorize our
application, from here we will obtain an access code which is then used to generate tokens.

Navigate to the following URL:
https://accounts.google.com/o0/o0auth?2/auth?scope=https://www.googleapis.com/aut
h/drive&response_type=code&access_type=offline&redirect uri=<redirecturl>&client_id=
<client id>

Where <client id> and <redirect url> are replaced by the configuration values obtained in Step 1.

For ease of sake, as you may have to do this a few times, we are going to use Linx to populate the URL
for us.

If you open up the sample solution and open the Setting values, replace the following values with the
ones obtained in Step !:

e google_ClientlD: Client ID
e google_ClientSecret: Client Secret
e google_RedirectURI: Redirect URI i.e. http://localhost

Next, in your Linx sample solution, debug the process [Googlel > [Authentication] > GenerateAuthURL.

You will see a URL being constricted with the dynamic parameters:

GenerateAuthURL *

Google_Intergration.Google.Authentication.GenerateAuthURL
l_urL #=1 Time=00:00:038 AveTime=00:00:033

Debug Output n Debug Values

Process started. Mame Value
Breakpoint reached: URL. https:/faccounts.google.com/o/oauth2/authTscope=https://
Process end reached. www.googleapis.comyauth,

URL drivefiresponse_type=codeBlaccess_type=offlinetredirect_u
ri=https://localhost8iclient_id=680470266551-
pagmnedds)iringd982igilgdiggSpec.apps.googleusercanten
t.com

Next, navigate to this URL from a Web browser.

2

https://accounts.google.com/o/oauth2/auth?scope=https://www.googleapis.com/auth/drive&response_type=code&access_type=offline&redirect_uri=%3credirecturl%3e&client_id=
https://accounts.google.com/o/oauth2/auth?scope=https://www.googleapis.com/auth/drive&response_type=code&access_type=offline&redirect_uri=%3credirecturl%3e&client_id=

v LINX Goog|€
byt ZE0 Sheets

You should then be asked to log in to your Google Account, once logged in you will be presented with
the below screen, when you are, click ‘Allow":

G Sign in with Google

LinxDemoApp wants to access
your Google Account

e ronan.worthington@twenty57.com
This will allow LinxDemoApp to:

L See, edit, create, and delete all of your Google @
Drive files

Make sure you trust LinxDemoApp

You may be sharing sensitive info with this site or app.
Learn about how LinxDemoApp will handle your data by
reviewing its terms of service and privacy policies. You can
always see or remove access in your Google Account.

Learn about the risks

Cance' m

You will then be redirected to you Redirect URI that we configured in Step 1, in our case, as we are using
localhost, it will look like there is an error:

@ localhost X =+

& C @ localhost/?code=4/rAFHx0976tjusI3SmyLIhpqfUGFBVFC2Rz_4s6-k7U9QUI29-IF7_t2hQohd ARpAAF3C2PAGNNIMIcPP53BUEOCiscope=https:

v.googleapis.com/auth/drive ¥

B

This site can’t be reached
localhost refused to connect.

Try:
+ Checking the connection
= Checking the proxy and the firewall

ERR_CONNECTION_REFUSED

=3

However, if you take a look at the URL, it contains some information, one of those is the Authorization

Code in the format of “https://localhost/?code=<your new auth code
here>&scope=https://www.googleapis.com/auth/drive.

13

https://localhost/?code=

LINX Google
linx.software E S h e etS
In this example the Authorization Code will be:

https://localhost/?code=4/rAFHx0976tusI3SmyL IhpafUGFBVF C2Rz_4s6-k7USQU929-
IF7_t2hQohdARpAAF3C2PAoNNIMIcPP538UEOc&scope=https://www.googleapis.com/auth/drive

Copy the value after “code="up until “&scope” and paste it in the Linx sample solution setting value
google_AuthCode.

This Authorization code is only valid for one request to get your Access and Refresh tokens (Step 3.3), i
your request fails then you will have to generate a new Authorization Code by repeating Step 3.2.

3. Obtain an access token from the Google Authorization Server.
In this next step we are going to make a Webservice request with our authorization values retrieved
from previous steps in order to obtain an Access and Refresh token.

Creating Automated Access Token Grant

In order to create a dynamic process that is automated, we need to create 3 processes that will handle
the granting and refreshing of access tokens, these will be:

1. GrantTokens: To initially grant the access tokens by using the Auth Code obtained in Step 3.2.
2. RefreshTokens: To handle the renewal of Access Tokens when they are expiring.
3. Authenticate: A handler process that will call the relevant process above.

The above is all included in the sample solution but | will explain how it was built so you can understand
for future Webservice authentication as the OAuth process is very generic.

1. Grant Tokens
Sample solution process: [Google_Intergration] > [Google] > [Authentication] > [GrantTokens]

This process will make a RESTful WebService request containing our authentication credentials, if
successful, it will return the new Access and Refresh tokens.

To begin, create a new process and give it the name of ‘GrantTokens'.
Next, add a CallRESTWebService function to the process and configure the properties as follows:

e URL: https://accounts.google.com/o/o0auth2/token
e Method: POST

e Body format: URL Encoded Content

e URL Encoded body:

https://localhost/?code=4/rAFHxo976tjusl3SmyLlhpqfUGf8VFC2Rz_4s6-k7U9QU929-IF7_t2hQohdARpAAF3C2PAoNNiMJcPP538UE0c&scope=https://www.googleapis.com/auth/drive
https://localhost/?code=4/rAFHxo976tjusl3SmyLlhpqfUGf8VFC2Rz_4s6-k7U9QU929-IF7_t2hQohdARpAAF3C2PAoNNiMJcPP538UE0c&scope=https://www.googleapis.com/auth/drive
https://accounts.google.com/o/oauth2/token

v LINX Goog|€
byt ZE0 Sheets

Configure URL encoded body (m] *
Name Value
code =8.5ettings.google_AuthCode EX v
client_id =5.5ettings.google_ClientID Ex v T
client_secret =85.5ettings.google_ClientSecret EX ~ W
grant_type authorization_cede B]
redirect_uri =5.5ettings.google_RedirectURI Ex v T

Undefined v

[]
o (Output type: String

Before running this process, repeat Step 3.2 (Obtain Auth Code) and update the Auth Code setting
value.

Once you've updated the code, run the process and take note of the debug output:

Settings * GrantTokens_ 2 * RefreshTokens * GenerateAuthURL *

Google_Intergration.Google. Authentication.GrantTokens_2

@ i GrantTokens #=1 Time=00:01:937 AveTime=00:01:937
Debug Output Debug Values

Process started. Name Value

Breakpoint reached: GrantTokens. » S.0utput

GrantTokens: URL Constructed https://accounts.google.com/o/o0a

GrantTokens: HTTP client created = GrantTokens

GrantTokens: Sending POST request

s »
GrantTokens: Response received ResponseHeaders

GrantTokens: ----------------- {
GrantTokens: Response code: 288 (OK) "access_token": "ya29.GluHBxske 1 7BuzHWUVW-
GrantTokens: Headers: zzfyrddwD33¥oLuBDyHwUbXmiWwAdckdl eDAfEalUbgngMwl
GrantTokens: Content-Type = application/json; charset=utf-8 XZgzchlgglTlzHIbp1KRYTMaM23Ld296fY2543hOU_rRTEOM_n
GrantTokens: Content-Length = 342 m3bcyl”,
GrantTokens: Body: ResponseBody "expires_in"s 3600,
GrantTokens: { "refresh_token": "1/
"accgssit?ken" ¢ "ya29.GluHBxskel76vzHWUVW-zzFyrd44wD33XoLuBD RpDDplZ8GNjnikeMoz_93NEqMnZbttimahopjaUskEcLgoy_VH
"expires_in": 3688, N . . R22xQmmPhTF6EP"
"refresh_token": "1/RpDDplZEGN:.|nlkENUZ_QENEqanbttlmlxupj9 "scope: "http;ff\:\rww.goog\eapls.comfauth!drlve"
"scope™: "https://www.googleapis.com/auth/drive™, ‘
"token_type": "Bearer"
GrantTokens: -----------------

Process end reached.

If your request was successful, you should see that the CallRESTWebservice function returns a
response 200" along with a Json string containing our access and refresh tokens.

IF your response was like the below, then you need to repeat Step 3.2.

15

L LINX

linx.software

Google
Sheets

GrantTokens Trace Log:
URL Constructed https://accounts.google.com/o/oauth2/token
HTTP client created
Sending POST request
Response received
Response code: 400 (BadRequest)
Body:
{
"error”: "invalid_grant’,

"error_description™: "Bad Request”

Note: If your request was successful, but there was no ‘RefreshToken’ present in the response, then go
to https://myaccount.google.com/u/0/permissions and remove permissions for the App, then repeat
Step 3.2. This is because the RefreshToken is only returned once when you first authorize the App.

Now, for use of use later in our solution, we want to create a CustomType based on this output so we
can pass the values into our other sub-processes that will require the credentials. To do this, copy the
ResponseBody String output from the CallRESTWebservice function and import it as a custom type
names ‘AccessToken’

Custom Type Import ®

Mame

AccessToken

EBrowse for afile | Browse for a file or paste JSON, JSON schema, XML or XML schema data

{
"access_token": "yai%.GlulHBxskelT&vzHWIVW-zziyr44wD33XoLluBDyHwUbEmiWwA4ckdlIeOALEalbgngliwlXig
"expires_in": 3&00,
"refresh_token": "1/RpDDplZ8GNjnikeNoz_93NEgNnZbttimdlxop]9UskEcLgoy VER22xQmmPhTFEE™,
"scope™: "httpa://www.googleapis.com/auth/drive™,
"token_type”: "Bearer”

CREATE CANCEL

https://myaccount.google.com/u/0/permissions

v LINX Goog|€
byt ZE0 Sheets

Now that we have our AccessToken CustomType structure configured, we can configure the
CallRESTWebservice function, to return the output of the request as this CustomType.

Response

Output type GoogleAuthentication AccessToken

If we repeat the actions from Step 3.2 up until now, and debug our process, you will see the structured
output of the Webservice call.

Settings * GrantTokens 2 % RefreshTokens * GenerateAuthURL %

Google_Intergration.Google.Authentication.GrantTokens_2
® @ GrantTokens 2=1 Time=00:01:703 AveTime=00:01:703

Debug Output Debug Values

Process started. Mame Value
Breakpoint reached: GrantTokens. » 5.0utput

GrantTokens: URL Constructed https://accounts.google.com/:

GrantTokens: HTTP client created « GrantTokens

GrantTokens: Sending POST request
GrantTokens: Response received
GrantTokens: ----------------- ~ ResponseBody

SrantTokens: Response code: 200 (oK) va29.GluHBBaa8LvZ50ZVF-9z2)yT5Za sk¥uwlgBYgzWinwvay
. : access_token dPWEARw-USI0PXtIUut2yrhewh3fIN-

GrantTokens: Content-Type = applicaticn/json; charset=ut-
GrantTokens: Content-Length = 321 dLJD3b6dU3DsBOuachLrmn3zh_B72B68XbMNoCS_Sqlou

b ResponseHeaders

GrantTokens: Body: token_type Bearer
GrantTokens: { . .
"access_token": "ya29.GluHBBaaBLvZ5@IVF-9z2)yFSIalsKYul) expires_in 2
"expires_in": 3688,)) refresh_token 1/kbcVjbeH-dIFwn5ewxh GO2KIWUknwxG10809LFfBd)8
"refresh_token": "1/k6cVibeH-dIFunSewxbGB2KikWUknuwxGl080!
"scope™: "https://www.googleapis.com/auth/drive”,
"token_type": "Bearer"
T
GrantTokens: -----------------

Proce end reached

Now to make this process modular, we are going to set this response as the output for the GrantTokens
process. To do this, configure a Process output named “AccessToken” and set it of the type
CustomType AccessToken.

Edit Qutput Fields (= x
Name Type Value
AccessToken Google Authentication.AccessToken v [1]
String v

Then, add a SetValue function to your process that will set the value of the output AccessToken =
CallRESTWebservice Response Body:

GrantTokens *

‘Google_Intergration.Google.Authentication.GrantTokens
® @@ GrantTokens
l_ SetValue_Output

17

Lingse Google
by ZE0 sheets

By doing this, we can call the process from another process and retrieve the Access token in a more
user-friendly fashion, it also makes the process more modular so that you can copy it into other
solutions without altering much.

Now that we have completed the process that grants us the access tokens, we are going to build one
that refreshes the access tokens for us.

2. Refresh Tokens

Similar to the above process, we are now going to make a process that will take in the AccessToken
CustomType, it will then make a Webservice request with the token details, upon successful response,
it will return an updated AccessToken custom type.

To save you some time, copy the process we just built ‘GrantTokens” and rename the copied process to
‘RefreshTokens'.

Then, configure the process the process to have an input ‘AccessToken’ of the CustomType
‘AccessToken’

Edit Input Fields (m| *

Name Type Value
AccessToken GoogleAuthentication AccessToken [1]
String e

Next, rename the CallRESTWebservice function to ‘RefreshTokens’ and condifure it as below:

e URL: https://www.googleapis.com/oauth2/v4/token
e Method: POST

e Body format: URL Encoded Content

e URL Encoded body:

Configure URL encoded body o ®
Name Value
client_id =5.5ettings.google_ClientlD EX v W
client_secret =8.5ettings.google_ClientSecret Ex v W
grant_type refresh_token]
refresh_token =S.Input.AccessToken.refresh_token ExX i

m CANCEL

Output: Leave as-is i.e. AccessToken CustomType

We now have a process that will handle the refreshing of access tokens, to test this we need to create a
handler process that will call either the GrantTokens or RefreshTokens process depending on a
condition.

https://www.googleapis.com/oauth2/v4/token

LINX Google
linx.software E Sheets
3. Authentication Handler

We are now going to create an authentication handler process that will determine if the access token
exists, if it doesn't then the process will execute the sub-process ‘GrantTokens', if it does exist but is
about to expire then the sub-process ‘RefreshTokens’ will be called. The response from either of these
processes will then be written to a file/database for later retrieval.

In the provided sample, | have created 2 approaches to retrieving and storing these values, the first one
is storing them in a database and the second is storing them in a file, depending on your environment
you can choose either one, they only differ on where the data is stored. You will see by comparing the
two that they are practically the same.

1. Authentication Handler: File

This process works as follows:

e Check if Access Token file exists on drive
o Ifexists:
o Read file contents
o Check Token expiry
» |fexpires soon:
e Call process RefreshToken
e Write output to file
e Ifnot exists:
o Call process GrantToken
o Write output to file

2. Authentication Handler: Database
This process works as follows:

o Retrieve AccessToken object from DB [Sub-process]
o Ifexists:
o Check Token expiry
= |f expires soon:
e Call process RefreshToken
e Write output to database
e Ifnot exists:
o Call process GrantToken
o Write output to database

The above authentication handler process can be added to a Timer service so that the process continually
checks if the token is still valid for example every 2 minutes. This will ensure that your access token is
always valid, when we will use the access token, we will simply reference a process that will read the
database/file and return the current token. This will be discussed in the next section.

L LINX Google
byt ZE0 sheets

For now, add a Timer service that executes every 2 minutes or so, when the event is triggered make a
process call to the relevant authentication handler:

TimerEvent *

Google_Intergration.Google. Authentication.Timer_RefreshTokens. TimerEvent
l_ AuthenticationHandler_DB

Once you have setup the Timer service, deploy your Solution to the Linx Application Server.

Then repeating Step 3.2, update your Auth Code in the Setting values of your solution and start the
timer service.

Let the timer service run and if no errors appear, go onto the next section.

If at all this process fails at some point (i.e. details change, timer interval incorrect), repeat step 3.2 up
until 3.3.3.

4. Connect to the Google APl with Access Token

For this process, we are going to make a simple Webservice request which will retrieve information
about our Google Drive instance, this is to demonstrate that the authentication functionality is correctly
configured. We are taking the example from the Google Developer Samples.

Sample solution process: [Google_Intergration] > [Google] > [Authentication] > [TestConnectivity]

For this process, we are going to make a GET request to this url:
https://www.googleapis.com/drive/v3/about

We are going to make use of a CallRESTWebservice function, configure it as follows:

e URL: https://www.googleapis.com/drive/v3/about
e Method: GET
e Query string:

o fields:user
e Headers:
o Authorization:"Bearer” + Access Token
e Body format: Text
e Body:
e (Qutput type: String

You will notice that we are using a header value, this is often the case with OAuth access, where you
pass in the Access Token value as a header value and it authenticates your request. To make the
process dynamic, we are going to pass in the Access Token from a sub-process which just returns the
AccessToken object (RetrieveAccessToken_DB).

20

https://developers.google.com/drive/api/v3/reference/about/get
https://www.googleapis.com/drive/v3/about
https://www.googleapis.com/drive/v3/about

L LINX

linx.software

TestConnectivity =

‘Google_Intergration.Google.Authentication. TestConnectivity

l_ RetrieveAccessToken_DB
@ CallRESTWebService_About

Configure Headers

Name Value

I Authorization I ="Bearer " + RetrievefccessToken_DB.AccessToken.access token

Then, we are also specifying in out Query string that we only want “About” information for the field

Value

user

“ ”
user :
Configure Query string
Name
fields

I Undefined

If you debug your process an enable logging, when the process runs you should see a successful “200”

response with your information.

2l

Google
Sheets

L LINX

linx.software

TestConnectivity *
Google_Intergration.Google.Authentication. TestConnectivity

l_ RetrieveAccessToken_DB
® @® CallRESTWebService_GetAboutDetails

#=1 Time=00:01:658 AveTime=00:01:658
#=1 Time=00:02:047 AveTime=00:02:047

Process started.
Breakpoint reached: CallRESTWebService_GetAboutDetails.

CallRESTWebService GetAboutDetails:
CallRESTWebService_GetAboutDetails:
CallRESTWebService_GetAboutDetails:
CallRESTWebService_GetAboutDetails:
CallRESTWebService_GetAboutDetails:
CallRESTWebService_GetAboutDetails:
CallRESTWebService_GetAboutDetails:
CallRESTWebService_GetAboutDetails:
CallRESTWebService_GetAboutDetails:
CallRESTWebService_GetAboutDetails:
CallRESTWebService_GetAboutDetails:

CallRESTWebService_GetAboutDetails:
Process end reached.

URL Constructed https
HTTP client created
Sending GET request
Response received
Response code: 288 (0
Headers:
Content-Length = 187
Content-Type = appli
Expires = Wed, 18 Se
Body:

{

CallRESTWebService_GetAboutDetails:
"user™: {
"kind": “"drive#user",
"displayName": "Ronan Worthington™,
"me": true,
"permissionId": "@88525848384274387384",
"emailAddress": “ronan.worthington@twenty57.com"
e
T

Debug Values
Name
b RetrievefccessToken_DB

» CallRESTWebService_GetAboutl

» ResponseHeaders

ResponseBody

Value

i

"user": {

"kind": "drivefuser”,

"displayMame": "Ronan
Worthington®,

"me": true,

"permissionld":
"08852504334274307384",

"emailAddress™
“ronan.worthington@twenty37.c...

If we wanted to, we could import this response as a CustomType and handle it better but because this

is just to perform a “ping” test we are going to leave it as is.

You should now be fully connected to your Google Drive instance, using what you have learnt above

you should be fairly comfortable with handling OAuth authentication in general. In the following

sections we'll go through some more practical and real-world samples in which we will explore the

Google Drive API functionality in more depth.

22

Google
Sheets

L LINX Google
byt ZE0 sheets

If you take a look at the provided sample solution there are a number of samples or recipes/templates
that should give you an idea of how to interact with the Google API using Linx. These processes touch on
some of the main API functionality as well extended functionality that can be accomplished with Linx.

Sample Processes

Below is a description of each of the provided sample processes to give you a high-level idea, it is
suggested that you tinker and play around with the solution to fully understand the process yourself.
Once you've got an idea of the basic structure, you can easily replicate and extend the API functionality.

*Note: These processes cannot be guaranteed to work in production and as such you should do thorough
testing before implementing them.

These processes are located in: [Google_Intergration] > [Google] > [Samples]

23

v LINX Goog|€
byt ZE0 Sheets

Google Drive

The below processes demonstrate several areas of AP! integration which relate to Drive items as a
whole, particular Google Sheets integration is explained further on.

-~ mm Drive
b [CustomProperties
] DeleteFile
] DownloadFile
] ListFiles

¥
4
¥
¥ [] UploadFile

Retrieve List of files from Google Drive
Google Drive API Documentation

Sample Process Location: [Google_Intergration] > [Google] > [Samples]>[ListFiles]>[ListFiles]

In this process, a webservice GET request is made to the Google Drive API to return a list of all the items
on the drive. This will allow you to retrieve the metadata associated with each file as a CustomType object
which you can then use in subsequent requests or to store the details somewhere for future use.

For our request, we are indicating what fields we want returned in the ‘query string’ property to improve
performance.

Run process result with file name input parameter (“LinxReport”):

ListFiles % -

Google_Intergration.Goagle.Samples.ListFiles ListFiles

l_ RetrieveAccessToken DB #=1 Time=00:01:787 AveTime=00:01:787

istFiles =1 Time=00:01: weTime=00:01:
ListFil #=1Ti 00:01:836 AveTi 00:01:836
etValue =0 Time=00:00: weTime=00:00:
e SV #=0Ti -00:00:000 AveTi 00:00:000

Process started. Name Value
Breakpoint reached: ListFiles.

~ SInput

ListFiles: URL Constructed https://www.googleapis.com//drive/v3/Files g=name+%3d%22LinxReport¥22

ListFiles: HTTP client created FileName LinsReport
ListFiles: Sending GET request

ListFiles: Response received * S.Output

ListFiles: =-e==rommmoenose- » RetrieveAccessToken DB
ListFiles: Response code: 288 (OK)

ListFiles: Headers: = ListFiles

ListFiles: Content-Length = 246 ' R

S i s esponseHeaders
ListFiles: Content-Type = application/json; charset=UTF-8 B

ListFiles: Expires = Thu, 13 Sep 2819 89:86:14 GMT
ListFiles: Body:)
ListFiles: { kind drive#fileList
"kind": “drivesfileList®,

~ ResponseBody

) incompleteSearch False
“incompleteSearch”: false,
Files™: [- files
“kind": "drivesfile", - Iteml
"id": "1Exjd_fphsAZwn¥A1kzVABspYZuDgkuDIj7KEIUVWal", Kind drivedfile
“name”: “"LinxReport",
i - . 1Bxjd_fphsAZwnY¥41kzV48spYZWDq
mimeType™: "application/vnd.google-apps.spreadsheet =
P ep google-apps-sp e KkuDJjTKEGjUNwal
1 name LinsReport

3 -
application/vnd.google-
mimeType
ListFiles: - oo apps spreadsheet
Process stopped by user: SetValue.

Results for all drive items:

24

https://developers.google.com/drive/api/v3/reference/files/list

L LINX

linx.software

Google
Sheets

ListFiles

Goagle_Intergration.Google Samples.ListFiles ListFiles

| RetrieveAccessToken_DB

@® @ istFiles

| setvalue

#=1 Time=00:00:006 AveTime=00:00:006
#=1 Time=00:01:380 AveTime=00:01:380
#=0 Time=00:00:000 AveTime=00:00:000

Debug Output

“mimeType”: "application/vnd.openxmlformats-officedocument . wordprocessingml.document”

"kind": “drive#file",
*id": "1OMfelintoaeqy tBzduZlgN1EToSVATbK",
*name": “Progress meeting - 38 August.docx”

*mimeType": “application/wnd.opemmlformats-officedocument.wordprocessingml.document”

Is

{

*kind": “drivesfile”,

*id": "1zedleBDul1i9sC4u-zoeddjmdErUxiDaK-ycbgFludl",
name”: “Demo Company (Global)”,

*mimeType": “"application/wnd.google-apps.spreadsheet”
T,

1

kind": “drive#file",

*id": “1okPri7Sr9Cfqs_4CA7GOVLpmKPXSIOQE2UkglpuGg3s”,
“name": “Demo Company (Global)",

*mimeType": “"application/vnd.google-apps.spreadsheet”
Ty

"ikind": "drive#file",
d": "1tXnUMZiBrFeA2aRY88lbo-ivsMBksZpZRSgajibielk",

“name": “Demo Company (Global)",

*mimeType": “"application/wnd.google-apps.spreadsheet”
Ts

*kind": “drivesfile",

*id": "1Exjd_fphsAZun¥41kzVA8spYZuDakuDII7KEIIUVWaI"
name": "LinxReport”,
*mimeType": “"application/wnd.google-apps.spreadshest”

kind": “drive#file",

" 1U6veaTsqBy@2eL 5833 2wEDNh30BC] InajuxQezhbwxe"
“Demo Company (Global)",

*mimeType": “"application/vnd.google-apps.spreadsheet”

"kind": “drive#file",

*id": "1aly78nosxAISXE1I9Iy6SrbOEK146MRId32QETOUDTS",
“name": “Demo Company (Global)",

*mimeType": “"application/wnd.google-apps.spreadsheet”

Ty

1
"ieind": “drivesfila”,

Debug Values
Name Value
~ Sinput
FileName
b S.Output
» RetrieveAccessToken_DE
~ ListFiles
} ResponseHeaders
~ ResponseBody
kind drivesfileList
incompleteSearch False
- files
~ lteml
kind drivesfile
. TwfbDh2cb3HNSITw3AGGEZXVM
; Cmzs8AyRIofdcPYS8e
name Sushi order 2019-08-16
application/vnd.google-
mimelype apps.spreadshest
> ltem2
kind drivesfile
q 1MEzZGhhTahkzd T9FFs3dcAL25S0
! mINNgr_ytld_VEZU4
Copy of 6 tools ta help build APls
name °
and microservices, fast!
application/nd.google-
IRSVES apps.document
~ ltem3
kind drivesfile
. 1p2IDbPKmyZLxiisd L35V 15wdXd3s
! mkR
Content Framework DRAFT1_30
name AUG.docx
application/vnd.openxmiformats-
mimeType officedocument wordprocessingml

25

L LINX Google
byt ZE0 sheets

Sample Processes Location: [Google_Intergration] > [Google] > [Samples]>[Upload]

Upload files from local drive to Google Drive
Google Drive APl Documentation

In this process, a file list is performed on a local file directory, when a file is picked up by Linx, it is then
searched for on Google Drive. If the file does not exist then the file is uploaded to Google Drive making
use of a resumable upload. If the file does already exist, a further check is done to determine if the file on
the local drive has been modified after the file on Google drive. If it is, then the file is updated with the
new file contents and metadata using a resumable upload. The resumable upload involves submitting
metadata in one request as a Json body, receiving a URL back, and then uploading the file data to the
returned URL in a subsequent request with the request body containing a filestream of the file. Once the
file has been uploaded to Google drive, the file is then moved from the local directory into a “processed”
directory.

26

https://developers.google.com/drive/api/v3/reference/files/create

Google
LINX
linx.software - p .

Download files from Google Drive to local drive
Google APl Documentation:

e Google Docs Export
e Non-Google Doc Download

e File Management

Sample Process Location: [Google_Intergration] > [Googlel > [Samples]>[Download]>[DowloadAllFiles]

In this process, files on Google Drive are downloaded onto your local drive. In order to download/export
specific files you need to specify the item ID to download it, to get the ID we can use our process created
earlier which returns a list of files.

The process is as follows.
First, a list of all the files on your Google Drive instance are retrieved.
Then, for each file returned the sub-process DownloadFileHandler is run.

In DownloadFileHandler, first a check is done on the MIME type of the file, this is to determine what type
of item it is i.e. Sheet, Doc, Folder etc.

IF the file is a generic Google doc, then the sub-process ‘DownloadFile_ExportGoogleFile is then executed.

DownloadFile_ExportGoogleFile: The sub-process ‘ConvertMIMEType' is called which returns the MS
Office equivalent of the GDrive MIME type. Then using this MIMEType, a webservice request is made to
‘export’ the google doc. A conversion is then done on the filename to remove any special characters for
the Windows drive. Finally, using a BinaryFileWrite function, the filestream returned from the webservice
is written to a file.

If the item is of type Google Folder, a file list is performed on the Google Folder to list its contents. For
each item in the folder, the process DownloadFileHandler is called again which will repeat the above
process to download the files within the folder.

If the drive item is not a generic google doc i.e. Excel Document, MS Word Doc, then another branch of
logic is triggered. First, a check is done on the file size of the item, if the size exceeds the max download
size in bytes then a multipart download is performed by calling the sub-process
‘DownloadFile_MultipartDownload'. This works by retrieving batches of the file until all the data has been
retrieved, as the data is retrieved it is a built up in a byte list. Finally, once all the data has been stored in
the byte list, it is written to a file using the BinaryFileWrite function.

If the file size is below the max download threshold, then the sub-process ‘DownloadFile_NonGoogleFile
“is called and inside it one request is made that retrieves all the data of the file, then using a the
BinaryFileWrite function the file is written to the local drive.

27

https://developers.google.com/drive/api/v3/reference/files/export
https://developers.google.com/drive/api/v3/reference/files/export
https://developers.google.com/drive/api/v3/reference/files/get
https://developers.google.com/drive/api/v3/reference/files/get
https://developers.google.com/drive/api/v3/reference/files/
https://developers.google.com/drive/api/v3/reference/files/
https://developers.google.com/drive/api/v3/mime-types

U
hdas

Delete files from Google Drive
Google Drive API Documentation

Sample Process Location: [Google_Intergration] > [Google] >
[Samples]>[Downloadl>[DeleteFile]>[DeleteFile]

In this process, a DELETE webservice request is made with the FilelD of the selected file, the file will
then be removed from your Google Drive instance.

Add Custom Properties for a File
Google Drive APl Documentation

Sample Process Location:
Location: [Samples] > [Drivel > [CustomProperties] > [AddCustomProperties]

Custom properties which can be thought of as drive item metadata is very useful in adding additional
custom “tags” to drive items, these could be individual identifiers or groups of files which you can then
search for all at once using the process. Custom properties are added in a key:value pair format.

Examples use cases of custom properties:

e Linking custom IDs to drive items in order to track files across systems eg.
“CustomID™:"363637™
e Linking files by group, eg: “Department”:"Treasury”

These can then be used to retrieve groups or specific drive items in a fairy quick and straight forward
way.

The process works as follows,
A list of key:value custom property pairs and a FilelD are passed in as an input.

A'loop is then performed for each of the key, value pairs in the list, for each item, a JSON string is built
up that will contain all the custom properties to be submitted.

The JSON string is then “closed”.

A webservice PATCH request is then made to the endpoint containing the FilelD along with the JSON
body that was built up and contains all the custom properties for that file.

Upon successful request, the custom properties are linked to the file.

A “real world” example process “Example_LinkCustomIDF orFiles” has been created to demonstrate a
use case. In this process, all the files from the drive are returned, then a random string is generated
(unique ID) and submitted as a custom property for each of the files. Then the DrivelD and the UniquelD
generated are written to a file to keep track of.

28

Google
Sheets

https://developers.google.com/drive/api/v3/reference/files/delete
https://developers.google.com/drive/api/v3/reference/files/delete

U LINX Google
linx.software E S h e etS
Search for Files by Custom Property

Location: [Samples] > [Drivel > [CustomProperties] > [SearchByCustomProperty]

Now that we can link custom properties to files, we can then use these properties to search for drive
items. In this process, a key:value pair are taking in as inputs, then a file list request is made with the
key:value pair as query parameters:

Configure Query string

Mame Value

q ="properties has { key=""+ S.Input.Key + " and value=""+ S.Input.Value +"'}"

Undefined

29

LN Google
linx.software E S h e EtS

Google Sheets

Create a Google Sheet
Google Sheets APl Documentation

Sample Process Location: [Google_Intergration] > [Googlel > [Samples]>[Sheets]>[Writel>[WriteSheet]

In this process, we are going to submit some metadata to the Google Sheets API from a CustomType
which will create a blank sheet on the Drive. We can choose to submit other data like the actual cell
values but we will do that with an update in a subsequent process.

The process is as follows:
First, we return the access token by calling the sub-process ‘RetrieveAccessToken_DB.

Then, we initiate a local instance of the ‘Spreadsheet’ CustomType, with a few of its meta-data
properties configured.

Update data values of a Google Sheet
Google Sheets APl Documentation

Sample Process Location: [Google_Intergration] > [Google] >
[Samples]>[Sheets]>[Createl>[CreateSheet]

In this process, we are going to submit values to the Google Sheets APl which will then “write out” the
sheet values online. Unlike the previous processes we are not simply uploading a file from the local
drive to google drive, in this case we are instructing the Sheets API to create a sheet as well as write out
values in certain columns/cells.

As of now, all the processes we have covered relate to the high-level Drive API, that's why we can
upload/download different types of files. For this process, its specific to the sheets and that is why the
Google Sheets APl must be enabled.

To “write” values to a sheet, you need to submit the values that you want in the format you expect them
to appear, we do this by submitting a JSON object containing the rows and cells we want to write out.

Create Metadata for a Sheet
Google Sheets APl Documentation

This process allows a user to “attach” certain metadata values to a whole spreadsheet (this can be
extended down to lower levels such as cells, but this process demonstrates the concept). These values
can then be used to identify files or group multiple files with “tags”.

In this sample, a spreadsheet with an ID has the metadata tag “testKey":"testValue” associated with it,

30

https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/create
https://developers.google.com/sheets/api/samples/writing
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets.developerMetadata

L LINX Google
linx.software S h eets

Useful Resources:
Google API Console: https://console.developers.google.com

Google Sheet APl Samples: https://developers.google.com/sheets/api/samples/

Google Drive API Samples: https://developers.google.com/drive/api/v3/reference/

Google Account Permissions: https://myaccount.google.com/u/0/permissions

31

https://console.developers.google.com/
https://developers.google.com/sheets/api/samples/
https://developers.google.com/drive/api/v3/reference/
https://myaccount.google.com/u/0/permissions

